LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid identification and quantitation of single plant seed allergen using paper-based microfluidics

Photo by brandi1 from unsplash

Nucleic acid amplification is a sensitive and powerful tool for allergen detection. However, it is limited due to the relatively cumbersome methods required to extract nucleic acids from single plant… Click to show full abstract

Nucleic acid amplification is a sensitive and powerful tool for allergen detection. However, it is limited due to the relatively cumbersome methods required to extract nucleic acids from single plant seed allergen (e.g. peanut and soybean). In view of this, an approach of extracting nucleic acid with untreated glass-fiber paper (paper-based microfluidics) was applied for nucleic acid capture and purification from plant seed allergen and commercial products. After cut by hollow cylindrical cutter, a certain size the paper chip it used to absorb DNA. And this paper-based microfluidics with DNA was directly applied for amplification by loop-mediated isothermal amplification (LAMP). To evaluate the adsorption performance of paper chip to DNA, CTAB and SDS method were used as comparisons. From amplification results, the established technique has good specificity, high repeatability (C.V. values are 4.41% and 6.17% for peanut and soybean) and favorable sensitivity (7.39 ng/μL or peanut and 6.6 ng/μL for soybean), and successfully used for commercial products (2 kinds of candy and 2 kinds of cakes containing peanut, and 2 kinds of drinks, candy and 2 kinds of biscuits containing soybean). This speed and flexible detection method makes it suit for applications in point-of-care (POC) detection at different scenario, such as custom house and import port.

Keywords: paper based; based microfluidics; seed allergen; plant seed; seed; paper

Journal Title: PLOS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.