LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Acidification of endothelial Weibel-Palade bodies is mediated by the vacuolar-type H+-ATPase

Photo by kellysikkema from unsplash

Weibel-Palade bodies (WPB) are unique secretory granules of endothelial cells that store the procoagulant von-Willebrand factor (VWF) in a highly compacted form. Upon exocytosis the densely packed VWF unfurls into… Click to show full abstract

Weibel-Palade bodies (WPB) are unique secretory granules of endothelial cells that store the procoagulant von-Willebrand factor (VWF) in a highly compacted form. Upon exocytosis the densely packed VWF unfurls into long strands that expose binding sites for circulating platelets and thereby initiate the formation of a platelet plug at sites of blood vessel injury. Dense packing of VWF requires the establishment of an acidic pH in the lumen of maturing WPB but the mechanism responsible for this acidification has not yet been fully established. We show here that subunits of the vacuolar-type H+-ATPase are present on mature WPB and that interference with the proton pump activity of the ATPase employing inhibitors of different chemical nature blocks a reduction in the relative internal pH of WPB. Furthermore, depletion of the V-ATPase subunit V0d1 from primary endothelial cells prevents WPB pH reduction and the establishment of an elongated morphology of WPB that is dictated by the densely packed VWF tubules. Thus, the vacuolar-type H+-ATPase present on WPB is required for proper acidification and maturation of the organelle.

Keywords: vacuolar type; type atpase; wpb; acidification; atpase

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.