LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Travel pattern-based bus trip origin-destination estimation using smart card data

Photo from wikipedia

Smart card data are widely used in generating the origin and destination (O–D) matrix for public transit, which contains important information for transportation planning and operation. However, the generation of… Click to show full abstract

Smart card data are widely used in generating the origin and destination (O–D) matrix for public transit, which contains important information for transportation planning and operation. However, the generation of the O–D matrix is limited by the smart card data information that includes the boarding (origin) information without the alighting (destination) information. To solve this problem, trip chain methods have been proposed, thereby greatly contributing in estimating the destination using the smart card data. Nevertheless, unlinked trips, that is, trips with unknown destinations, are a persisting issue. The purpose of this study is to develop a method for estimating the destination of unlinked trips, in which trip chain methods cannot be applied, using temporal travel patterns and historical boarding records of the passengers based on long-term smart card data. The passengers were clustered by k-means clustering, and the time-of-day travel patterns were estimated for each cluster using a Gaussian mixture model. The travel patterns were formulated to estimate the destination of the passengers from the smart card data. The proposed method was verified using the 2018 smart card data collected in Sejong City, South Korea. The existing trip chain method matched the destinations of 60.0% of the total trips, whereas the proposed method improved the matching to 74.9% by additionally matching the destinations of 37.2% of the unlinked trips.

Keywords: travel; smart card; destination; trip; card data

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.