LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring EEG spectral and temporal dynamics underlying a hand grasp movement

Photo by i_am_nah from unsplash

For brain-computer interfaces, resolving the differences between pre-movement and movement requires decoding neural ensemble activity in the motor cortex’s functional regions and behavioural patterns. Here, we explored the underlying neural… Click to show full abstract

For brain-computer interfaces, resolving the differences between pre-movement and movement requires decoding neural ensemble activity in the motor cortex’s functional regions and behavioural patterns. Here, we explored the underlying neural activity and mechanisms concerning a grasped motor task by recording electroencephalography (EEG) signals during the execution of hand movements in healthy subjects. The grasped movement included different tasks; reaching the target, grasping the target, lifting the object upwards, and moving the object in the left or right directions. 163 trials of EEG data were acquired from 30 healthy participants who performed the grasped movement tasks. Rhythmic EEG activity was analysed during the premovement (alert task) condition and compared against grasped movement tasks while the arm was moved towards the left or right directions. The short positive to negative deflection that initiated around -0.5ms as a wave before the onset of movement cue can be used as a potential biomarker to differentiate movement initiation and movement. A rebound increment of 14% of beta oscillations and 26% gamma oscillations in the central regions was observed and could be used to distinguish pre-movement and grasped movement tasks. Comparing movement initiation to grasp showed a decrease of 10% in beta oscillations and 13% in gamma oscillations, and there was a rebound increment 4% beta and 3% gamma from grasp to grasped movement. We also investigated the combination MRCPs and spectral estimates of α, β, and γ oscillations as features for machine learning classifiers that could categorize movement conditions. Support vector machines with 3rd order polynomial kernel yielded 70% accuracy. Pruning the ranked features to 5 leaf nodes reduced the error rate by 16%. For decoding grasped movement and in the context of BCI applications, this study identifies potential biomarkers, including the spatio-temporal characteristics of MRCPs, spectral information, and choice of classifiers for optimally distinguishing initiation and grasped movement.

Keywords: grasped movement; movement; hand; grasp; movement tasks; exploring eeg

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.