LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Alantolactone reduced neuron injury via activating PI3K/Akt signaling pathway after subarachnoid hemorrhage in rats

Photo by tcwillmott from unsplash

Subarachnoid hemorrhage (SAH) is a common disease with high morbidity and mortality, which can cause pathological, physiological, and biological reactions. SAH causes a series of responses such as neuronal and… Click to show full abstract

Subarachnoid hemorrhage (SAH) is a common disease with high morbidity and mortality, which can cause pathological, physiological, and biological reactions. SAH causes a series of responses such as neuronal and cerebral cortex damage, which in turn leads to inflammation and apoptosis. Traditional Chinese medicine has a strong anti-inflammatory effect, such as Alantolactone (ATL). However, studies on ATL therapy for SAH have not been reported. We observed the neurological scores, brain water content, Evans blue (EB) extravasation, neuroinflammation, and apoptosis via performing an enzyme-linked immunosorbent assay (ELISA), western blotting, immunofluorescence staining, and other methods after SAH. In this study, we found that ATL treatment attenuated the neurologic deficits, inhibited neuronal apoptosis and inflammatory reaction, promoted polarization of microglia toward the M2 phenotype, and activated the PI3K/Akt signaling pathway. ATL can reduce the neurons and cerebral cortex damage of SAH rats through activating PI3K/Akt signaling pathway.

Keywords: pi3k akt; signaling pathway; subarachnoid hemorrhage; akt signaling; activating pi3k

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.