LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatial distributions of salt-based ions, a case study from the Hunshandake Sandy Land, China

Photo by joshboot from unsplash

Soil water soluble base ion salt-based ion concentrations are critical parameters for estimating soil buffer capacity and vegetation productivity. Ionic content clearly covaries with the distribution of plant communities. Previous… Click to show full abstract

Soil water soluble base ion salt-based ion concentrations are critical parameters for estimating soil buffer capacity and vegetation productivity. Ionic content clearly covaries with the distribution of plant communities. Previous studies on salt-based ions in soils focused primarily on ion migration and its relationships with vegetation growth. Few studies have sought to characterize larger scale spatial distribution of salt-based ions or correlation with climatic and plant community characteristics. This study used ion chromatography to analyze the salt-based ion content (Ca2+, Mg2+, Na+ and K+) of surface soils from the Hunshandake sandy lands. Statistical methods were used interpret spatial variation. Results showed that the average content of salt-based ions in Hunshandake sandy land was 86.57 mg/kg. Average values ranked as Ca2+ > Na+ > K+ > Mg2+ but concentrations also exhibited uneven spatial distributions. Horizontal spatial variation in Ca2+, Mg2+ and Na+ ions showed these ions gradually decrease from northwest to southeast. Potassium ions (K+) showed no obvious spatial variation trends. Ions varied significantly across different soil layers but their average concentrations ranked as K+>Na+>Ca2+>Mg2+ (from shallow to deep). The 20–30 cm soil layer contained the highest salt ion concentrations. Of the four base ions, only K+ ions appeared in surface samples. In terms of water soluble base ion available salt-based ions, Ca2+ occurred in the highest concentrations along the north and west side of the study area. K+ ions occurred in the highest concentrations along the south and east sides of the study area. Na+ concentrations did not show a consistent spatial pattern. Statistical analysis detected significant correlations of normalized ion concentration parameters (Ca2+/CECT, K+/CEC, effective water soluble base ion salt-based ions) and the total species number, average species number and total biomass of the plant communities (P <0.05). This study can help inform understanding of soil water transport in sandy areas and provide a reference for interpreting ecosystems in arid regions.

Keywords: salt based; hunshandake sandy; based ions; ion; soil

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.