LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Global assessment of storm disaster-prone areas

Photo from wikipedia

Background Advances in climate change research contribute to improved forecasts of hydrological extremes with potentially severe impacts on human societies and natural landscapes. Rainfall erosivity density (RED), i.e. rainfall erosivity… Click to show full abstract

Background Advances in climate change research contribute to improved forecasts of hydrological extremes with potentially severe impacts on human societies and natural landscapes. Rainfall erosivity density (RED), i.e. rainfall erosivity (MJ mm hm-2 h-1 yr-1) per rainfall unit (mm), is a measure of rainstorm aggressiveness and a proxy indicator of damaging hydrological events. Methods and findings Here, using downscaled RED data from 3,625 raingauges worldwide and log-normal ordinary kriging with probability mapping, we identify damaging hydrological hazard-prone areas that exceed warning and alert thresholds (1.5 and 3.0 MJ hm-2 h-1, respectively). Applying exceedance probabilities in a geographical information system shows that, under current climate conditions, hazard-prone areas exceeding a 50% probability cover ~31% and ~19% of the world’s land at warning and alert states, respectively. Conclusion RED is identified as a key driver behind the spatial growth of environmental disruption worldwide (with tropical Latin America, South Africa, India and the Indian Archipelago most affected).

Keywords: disaster prone; storm disaster; assessment storm; prone areas; prone; global assessment

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.