LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deploying deep learning models on unseen medical imaging using adversarial domain adaptation

Photo by nouuur from unsplash

The fundamental challenge in machine learning is ensuring that trained models generalize well to unseen data. We developed a general technique for ameliorating the effect of dataset shift using generative… Click to show full abstract

The fundamental challenge in machine learning is ensuring that trained models generalize well to unseen data. We developed a general technique for ameliorating the effect of dataset shift using generative adversarial networks (GANs) on a dataset of 149,298 handwritten digits and dataset of 868,549 chest radiographs obtained from four academic medical centers. Efficacy was assessed by comparing area under the curve (AUC) pre- and post-adaptation. On the digit recognition task, the baseline CNN achieved an average internal test AUC of 99.87% (95% CI, 99.87-99.87%), which decreased to an average external test AUC of 91.85% (95% CI, 91.82-91.88%), with an average salvage of 35% from baseline upon adaptation. On the lung pathology classification task, the baseline CNN achieved an average internal test AUC of 78.07% (95% CI, 77.97-78.17%) and an average external test AUC of 71.43% (95% CI, 71.32-71.60%), with a salvage of 25% from baseline upon adaptation. Adversarial domain adaptation leads to improved model performance on radiographic data derived from multiple out-of-sample healthcare populations. This work can be applied to other medical imaging domains to help shape the deployment toolkit of machine learning in medicine.

Keywords: domain adaptation; adaptation; auc; test auc; adversarial domain; medical imaging

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.