LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of L-moment method for regional frequency analysis of meteorological drought across the Loess Plateau, China

Water shortages have always been the primary bottleneck for the healthy and sustainable development of the ecological environment on the Loess Plateau (LP). Proper water resource management requires knowledge of… Click to show full abstract

Water shortages have always been the primary bottleneck for the healthy and sustainable development of the ecological environment on the Loess Plateau (LP). Proper water resource management requires knowledge of the spatiotemporal characteristics of precipitation frequency. This paper employed the gridded precipitation dataset obtained from the China Meteorological Data Service Centre to present a spatially explicit characterization of precipitation frequencies in tandem with their return periods on the LP based on the L-moment method. The 60% and 80% of the mean annual precipitation from 1981 to 2010 were synonymous with severe and moderate droughts, respectively. Droughts occurred more frequently in the northwest than in the southeast of the LP. Moreover, the frequencies of moderate drought showed a slight difference throughout the area, while those of severe droughts demonstrated considerable differences between the northwestern arid zone and the southeastern semi-humid zone. The maps associated with various return periods of precipitation deficits can be used to produce drought risk maps together with drought vulnerability maps. These findings could also provide useful information for drought management, water resource management and the development of food security policies.

Keywords: frequency; drought; moment method; loess plateau; precipitation

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.