LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Research and application of a new method for adjusting the vehicle body height

Photo from wikipedia

The use of active suspension for vehicle height adjustment has problems of high cost, high energy consumption, slow response, and complex structure. This paper proposes a new method for adjusting… Click to show full abstract

The use of active suspension for vehicle height adjustment has problems of high cost, high energy consumption, slow response, and complex structure. This paper proposes a new method for adjusting the vehicle body using the damping asymmetric characteristic of semi-active suspensions, which is based on the idea that the dampers with damping asymmetric characteristics will cause a change in the mean position of the vehicle body vibration. To verify the feasibility of this method, a single-wheel vehicle model containing asymmetric damping is established. The system’s responses under the sinusoidal and random roads excitation are obtained by the fourth-order Runge-Kutta method, the influences of key parameters on the vehicle body’s shifting height are analyzed, and the mechanism of vehicle body’s shift is explained from the perspective of energy conservation. Then a vehicle body height controller based on third-order linear active disturbance rejection control (LADRC) is designed. Simulation results show that the proposed method for controlling the vehicle height with asymmetric damping can quickly adjust the vehicle to the expected height whether under the sinusoidal road or random road. In addition, no additional hardware and energy consumption are required, providing a new idea for vehicle height control.

Keywords: vehicle; method adjusting; vehicle body; new method

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.