LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Emotional Variance Analysis: A new sentiment analysis feature set for Artificial Intelligence and Machine Learning applications

Photo by dawson2406 from unsplash

Sentiment Analysis (SA) is a category of data mining techniques that extract latent representations of affective states within textual corpuses. This has wide ranging applications from online reviews to capturing… Click to show full abstract

Sentiment Analysis (SA) is a category of data mining techniques that extract latent representations of affective states within textual corpuses. This has wide ranging applications from online reviews to capturing mental states. In this paper, we present a novel SA feature set; Emotional Variance Analysis (EVA), which captures patterns of emotional instability. Applying EVA on student journals garnered from an Experiential Learning (EL) course, we find that EVA is useful for profiling variations in sentiment polarity and intensity, which in turn can predict academic performance. As a feature set, EVA is compatible with a wide variety of Artificial Intelligence (AI) and Machine Learning (ML) applications. Although evaluated on education data, we foresee EVA to be useful in mental health profiling and consumer behaviour applications. EVA is available at https://qr.page/g/5jQ8DQmWQT4. Our results show that EVA was able to achieve an overall accuracy of 88.7% and outperform NLP (76.0%) and SentimentR (58.0%) features by 15.8% and 51.7% respectively when predicting student experiential learning grade scores through a Multi-Layer Perceptron (MLP) ML model.

Keywords: feature set; variance analysis; emotional variance; analysis; sentiment analysis

Journal Title: PLOS ONE
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.