LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasma treatment effects on destruction and recovery of Porphyromonas gingivalis biofilms

Photo by schluditsch from unsplash

The objective of this study was to investigate the treatment effects of non-thermal atmospheric gas plasmas (NTAP) on destruction and the recovery (or re-colonization) of Porphyromonas gingivalis (P. gingivalis) in… Click to show full abstract

The objective of this study was to investigate the treatment effects of non-thermal atmospheric gas plasmas (NTAP) on destruction and the recovery (or re-colonization) of Porphyromonas gingivalis (P. gingivalis) in biofilms. P. gingivalis is a well-known keystone periodontal pathogen strongly associated with periodontal diseases, especially periodontitis. P. gingivalis biofilms were formed on stainless steel coupons and treated for 1, 2, and 5 minutes by NTAP of pure argon gas and argon+oxygen gas mixture. MTT assay, colony forming unit (CFU) counting assay and confocal laser scanning microscopy (CLSM) were used to assess the destruction efficiency. In addition, the plasma treated biofilms were re-cultured in the medium supplemented with antibiotics and oxidative stress sources to determine the synergy of the NTAP with other antimicrobial agents. The results showed the plasma treatment could result in 2.7 log unit reduction in bacterial load. The recovered biofilm CFU with NTAP treatment combined with sub minimal inhibition concentration of amoxicillin was 0.33 log units less than the biofilm treated with amoxicillin alone. The recovered biofilm CFU in NTAP groups was about 2.0 log units less than that in the untreated controls under H2O2 treatment. There was approximately 1.0 log unit reduction of biofilm CFU in plasma treated biofilm compared with untreated control under paraquat treatment. The plasma treated biofilms exhibited less resistance to amoxicillin and greater susceptibility to hydrogen peroxide (H2O2) and paraquat, suggesting that NTAP may enhance biofilm susceptibility to host defense. These in vitro findings suggested that NTAP could be a novel and effective treatment method of oral biofilms that cause periodontal diseases.

Keywords: treatment effects; gingivalis; gingivalis biofilms; treatment; destruction recovery

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.