Korteweg-de Vries Caudrey-Dodd-Gibbon (KdV-CDG) equation describes many physical phenomena in plasma physics, optical fibers, dynamics of the ocean, quantum mechanics, acoustic waves and laser optical applications. In this paper, the… Click to show full abstract
Korteweg-de Vries Caudrey-Dodd-Gibbon (KdV-CDG) equation describes many physical phenomena in plasma physics, optical fibers, dynamics of the ocean, quantum mechanics, acoustic waves and laser optical applications. In this paper, the KdV-CDG equation is analyzed via two reliable and efficient integrating approaches. The suggested techniques; the extended G′G2-expansion method and exponential (ψ(ξ))-expansion method successfully extract hyperbolic function solutions, trigonometric function solutions and rational function solutions. The existence criteria for all the obtained solutions are also discussed in this paper. At the end, various 3D and 2D contour plots have been constructed for better understanding of constructed solutions.
               
Click one of the above tabs to view related content.