LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of three-dimensional digital analyses and two-dimensional histomorphometric analyses of the bone-implant interface

Photo from wikipedia

Histological analysis is considered to be the gold standard method of evaluating osseointegration around a bone-implant. However, this method requires invasive specimen preparation and is capable of representing only one… Click to show full abstract

Histological analysis is considered to be the gold standard method of evaluating osseointegration around a bone-implant. However, this method requires invasive specimen preparation and is capable of representing only one plane. By comparison, micro-computed tomography (μCT) is a fast and convenient method that offers three-dimensional information but is hampered by problems related to resolution and artifacts, making it a supplementary method for osseointegration analysis. To verify the reliability of μCT for osseointegration evaluation, this animal model study compared bone-to-implant contact (BIC) ratios obtained by the gold standard histomorphometric method with those obtained by the μCT method, using a rabbit tibia implant model. A sandblasted, large-grit, acid-etched (SLA) implant and a machined surface implant were inserted into each tibia of two rabbits (giving eight implants in total). Bone-implant specimens were analyzed using μCT with a spiral scan technique (SkyScan 1275) and histological sections were prepared thereafter. Three-dimensional (3D) reconstructed μCT data and four two-dimensional (2D) μCT sections, including one section corresponding to the histologic section and three additional sections rotated 45°, 90°, and 135°, were used to calculate the BIC ratio. The Pearson’s test was used for correlation analysis at a significance level of 0.05. The histomorphometric BIC and the 2D-μCT BIC showed strong correlation (r = 0.762, P = 0.046), whereas the histomorphometric BIC and 3D-μCT BIC did not (r = -0.375, P = 0.385). However, the mean BIC value of three or four 2D-μCT sections showed a strong correlation with the 3D-μCT BIC (three sections: r = 0.781, P = 0.038; four sections: r = 0.804, P = 0.029). The results of this animal model study indicate that μCT can be used to complement the histomorphometric method in bone-implant interface analyses. With the limitations of this study, 3D-μCT analysis may even have a superior aspect in that it eliminates random variables that arise as a consequence of the selected cutting direction.

Keywords: two dimensional; bone; bone implant; three dimensional; method; implant interface

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.