LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decoupled neural network training with re-computation and weight prediction

Photo by siora18 from unsplash

To break the three lockings during backpropagation (BP) process for neural network training, multiple decoupled learning methods have been investigated recently. These methods either lead to significant drop in accuracy… Click to show full abstract

To break the three lockings during backpropagation (BP) process for neural network training, multiple decoupled learning methods have been investigated recently. These methods either lead to significant drop in accuracy performance or suffer from dramatic increase in memory usage. In this paper, a new form of decoupled learning, named decoupled neural network training scheme with re-computation and weight prediction (DTRP) is proposed. In DTRP, a re-computation scheme is adopted to solve the memory explosion problem, and a weight prediction scheme is proposed to deal with the weight delay caused by re-computation. Additionally, a batch compensation scheme is developed, allowing the proposed DTRP to run faster. Theoretical analysis shows that DTRP is guaranteed to converge to crical points under certain conditions. Experiments are conducted by training various convolutional neural networks on several classification datasets, showing comparable or better results than the state-of-the-art methods and BP. These experiments also reveal that adopting the proposed method, the memory explosion problem is effectively solved, and a significant acceleration is achieved.

Keywords: computation; neural network; weight prediction; network training; weight

Journal Title: PLOS ONE
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.