LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Developing an AI-assisted clinical decision support system to enhance in-patient holistic health care

Photo by myriamzilles from unsplash

Holistic health care (HHC) is a synonym for complete patient care, and as such an efficient clinical decision support system (CDSS) for HHC is critical to support the judgement of… Click to show full abstract

Holistic health care (HHC) is a synonym for complete patient care, and as such an efficient clinical decision support system (CDSS) for HHC is critical to support the judgement of physician’s decision in response of patient’s physical, emotional, social, economic, and spiritual needs. The field of artificial intelligence (AI) has evolved considerably in the past decades and many AI applications have been deployed in various contexts. Therefore, this study aims to propose an AI-assisted CDSS model that predicts patients in need of HHC and applies an improved recurrent neural network (RNN) model, long short-term memory (LSTM) for the prediction. The data sources include in-patient’s comorbidity status and daily vital sign attributes such as blood pressure, heart rate, oxygen prescription, etc. A two-year dataset consisting of 121 thousand anonymized patient cases with 890 thousand physiological medical records was obtained from a medical center in Taiwan for system evaluation. Comparing with the rule-based expert system, the proposed AI-assisted CDSS improves sensitivity from 26.44% to 80.84% and specificity from 99.23% to 99.95%. The experimental results demonstrate that an AI-assisted CDSS could efficiently predict HHC patients.

Keywords: system; holistic health; care; support; decision; health care

Journal Title: PLOS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.