LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of interface mechanical properties between geotextiles and tailings during pull-out tests

Photo from wikipedia

Considering the strain-softening characteristics of the pull-out interface between geotextiles and tailings; to determine the interface interaction characteristics, this paper proposes a trilinear shear stress displacement softening model of geotextile-reinforced… Click to show full abstract

Considering the strain-softening characteristics of the pull-out interface between geotextiles and tailings; to determine the interface interaction characteristics, this paper proposes a trilinear shear stress displacement softening model of geotextile-reinforced tailings. The obtained nonlinear governing equations were dimensionless, which were expressed in finite difference form. The results indicated that an accurate numerical solution could be obtained within a reasonable calculation time by discretizing the reinforcement length into 300 units. Three new dimensionless interaction terms, namely, the relative stiffness α, relative displacement β, and relative interface shear stiffness η of the reinforcement-tailings interaction, were introduced. In addition, an estimation method based on the approximate value of the relative stiffness α of the reinforcement-soil interface in the low-tensile-force displacement range was proposed. The interface shear stress range according to parameters α, β, and η was parameterized, and the normalization relationship between the tensile force and pull-out end displacement was determined. The numerical values calculated by the model were compared with the pull-out test results, demonstrating that the proposed model can accurately predict the pull-out behavior of the extensible reinforcement.

Keywords: analysis interface; interface mechanical; displacement; interface; geotextiles tailings; mechanical properties

Journal Title: PLOS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.