LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Satellite cloud image segmentation based on lightweight convolutional neural network

Photo by alterego_swiss from unsplash

More than 50% of the images captured by optical satellites are covered by clouds, which reduces the available information in the images and seriously affects the subsequent applications of satellite… Click to show full abstract

More than 50% of the images captured by optical satellites are covered by clouds, which reduces the available information in the images and seriously affects the subsequent applications of satellite images. Therefore, the identification and segmentation of cloud regions come to be one of the most important problems in current satellite image processing. Due to the complexity and variability of satellite images, especially when the ground is covered with snow, the boundary information of cloud regions is difficult to be accurately identified. The fast and accurate segmentation of cloud regions is a difficult point in the current research. We propose a lightweight convolutional neural network. Firstly, channel attention is used to optimize the effective information in the feature maps as a way to improve the network’s ability to extract semantic information at each scale. Then, we fuse high and low-dimensional feature maps to enhance the network’s ability to obtain small-scale semantic information. In addition, the feature aggregation module automatically adjusts the input multi-level feature weights to highlight the details of different features. Finally, we design the fully connected conditional random field to solve the problem that some noise in the input image and local minima during training is passed to the output layer resulting in the loss of edge features. Experimental results show that the proposed method achieves 0.9695 and 0.8218 for overall accuracy and recall, respectively, which has higher segmentation accuracy with the shortest time consumption compared with other state-of-the-art methods.

Keywords: information; network; segmentation; lightweight convolutional; cloud; image

Journal Title: PLOS ONE
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.