The COVID-19 global pandemic is being driven by evolving SARS-CoV-2 variants with consequential implications on virus transmissibility, host immunity, and disease severity. Continuous molecular and genomic surveillance of the SARS-CoV-2… Click to show full abstract
The COVID-19 global pandemic is being driven by evolving SARS-CoV-2 variants with consequential implications on virus transmissibility, host immunity, and disease severity. Continuous molecular and genomic surveillance of the SARS-CoV-2 variants is therefore necessary for public health interventions toward the management of the pandemic. This study is a retrospective analysis of COVID-19 cases reported in a Nigerian tertiary institution from July to December 2021. In total, 705 suspected COVID-19 cases that comprised 547 students and 158 non-students were investigated by real time PCR (RT-PCR); of which 372 (~52.8%) tested positive for COVID-19. Using a set of selection criteria, 74 (~19.9%) COVID-19 positive samples were selected for next generation sequencing. Data showed that there were two outbreaks of COVID-19 within the university community over the study period, during which more females (56.8%) tested positive than males (47.8%) (p<0.05). Clinical data together with phylogenetic analysis suggested community transmission of SARS-CoV-2 through mostly asymptomatic and/or pre-symptomatic individuals. Confirmed COVID-19 cases were mostly mild, however, SARS-CoV-2 delta (77%) and omicron (4.1%) variants were implicated as major drivers of respective waves of infections during the study period. This study highlights the importance of integrated surveillance of communicable disease during outbreaks.
               
Click one of the above tabs to view related content.