LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assembly and regulation of the mammalian mRNA processing body

Photo by sweetlifediabetes from unsplash

Messenger RNA processing bodies (P-bodies) are cytoplasmic membrane-free organelles that contain proteins involved in mRNA silencing, storage and decay. The mechanism by which P-body components interact and the factors that… Click to show full abstract

Messenger RNA processing bodies (P-bodies) are cytoplasmic membrane-free organelles that contain proteins involved in mRNA silencing, storage and decay. The mechanism by which P-body components interact and the factors that regulate the stability of these structures are incompletely understood. In this study, we used a fluorescence-based, two-hybrid assay to investigate interactions between P-body components that occur inside the cell. LSm14a, PATL1, XRN1, and NBDY were found to interact with the N-terminal, WD40-domain-containing portion of EDC4. The N-terminus of full-length PATL1 was required to mediate the interaction between EDC4 and DDX6. The C-terminal, alpha helix-domain- containing portion of EDC4 was sufficient to mediate interaction with DCP1a and CCHCR1. In the absence of endogenous P-bodies, caused by depletion of LSm14a or DDX6, expression of the portion of EDC4 that lacked the N-terminus retained the ability to form cytoplasmic dots that were indistinguishable from P-bodies at the level of UV light microscopy. Despite the absence of endogenous P-bodies, this portion of EDC4 was able to recruit DCP1a, CCHCR1 and EDC3 to cytoplasmic dots. The results of this study permit the development of a new model of P-body formation and suggest that the N-terminus of EDC4 regulates the stability of these structures.

Keywords: processing; regulation mammalian; portion edc4; assembly regulation; body

Journal Title: PLOS ONE
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.