LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of Bayesian variable selection method on mixed linear regression models

Photo from wikipedia

Variable selection has always been an important issue in statistics. When a linear regression model is used to fit data, selecting appropriate explanatory variables that strongly impact the response variables… Click to show full abstract

Variable selection has always been an important issue in statistics. When a linear regression model is used to fit data, selecting appropriate explanatory variables that strongly impact the response variables has a significant effect on the model prediction accuracy and interpretation effect. redThis study introduces the Bayesian adaptive group Lasso method to solve the variable selection problem under a mixed linear regression model with a hidden state and explanatory variables with a grouping structure. First, the definition of the implicit state mixed linear regression model is presented. Thereafter, the Bayesian adaptive group Lasso method is used to determine the penalty function and parameters, after which each parameter’s specific form of the fully conditional posterior distribution is calculated. Moreover, the Gibbs algorithm design is outlined. Simulation experiments are conducted to compare the variable selection and parameter estimation effects in different states. Finally, a dataset of Alzheimer’s Disease is used for application analysis. The results demonstrate that the proposed method can identify the observation from different hidden states, but the results of the variable selection in different states are obviously different.

Keywords: linear regression; mixed linear; variable selection; method

Journal Title: PLOS ONE
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.