LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bass detection model based on improved YOLOv5 in circulating water system

Photo from wikipedia

The feeding amount of bass farming is closely related to the number of bass. It is of great significance to master the number of bass to achieve accurate feeding and… Click to show full abstract

The feeding amount of bass farming is closely related to the number of bass. It is of great significance to master the number of bass to achieve accurate feeding and improve the economic benefits of the farm. In view of the interference caused by the problems of multiple targets and target occlusion in bass data for bass detection, this paper proposes a bass target detection model based on improved YOLOV5 in circulating water system. Firstly, acquiring by HD cameras, Mosaic-8, a data augmentation method, is utilized to expand datasets and improve the generalization ability of the model. And K-means clustering algorithm is applied to generate suitable coordinates of prior boxes to improve training efficiency. Secondly, Coordinate Attention mechanism (CA) is introduced into backbone feature extraction network and neck feature fusion network to enhance attention to targets of interest. Finally, Soft-NMS algorithm replaces Non-Maximum Suppression algorithm (NMS) to re-screen prediction boxes and keep targets with higher overlap, which effectively solves the problems of missed detection and false detection. The experiments show that the proposed model can reach 98.09% in detection accuracy and detection speed reaches 13.4ms. The proposed model can help bass farmers under the circulating water system to accurately grasp the number of bass, which has important application value to realize accurate feeding and water conservation.

Keywords: bass; water system; detection; model; circulating water

Journal Title: PLOS ONE
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.