There is a controversy over what causes the low robustness of some programs for predicting protein stability change upon mutation. Some researchers suggested that low-quality data and insufficiently informative features… Click to show full abstract
There is a controversy over what causes the low robustness of some programs for predicting protein stability change upon mutation. Some researchers suggested that low-quality data and insufficiently informative features are the primary reasons, while others attributed the problem largely to a bias caused by data imbalance as there are more destabilizing mutations than stabilizing ones. In this study, a simple approach was developed to construct a balanced dataset that was then conjugated with a leave-one-protein-out approach to illustrate that the bias may not be the primary reason for poor performance. A balanced dataset with some seemly good conventional n-fold CV results should not be used as a proof that a model for predicting protein stability change upon mutations is robust. Thus, some of the existing algorithms need to be re-examined before any practical applications. Also, more emphasis should be put on obtaining high quality and quantity of data and features in future research.
               
Click one of the above tabs to view related content.