This paper discusses the merging of two optimization algorithms, atom search optimization and particle swarm optimization, to create a hybrid algorithm called hybrid atom search particle swarm optimization (h-ASPSO). Atom… Click to show full abstract
This paper discusses the merging of two optimization algorithms, atom search optimization and particle swarm optimization, to create a hybrid algorithm called hybrid atom search particle swarm optimization (h-ASPSO). Atom search optimization is an algorithm inspired by the movement of atoms in nature, which employs interaction forces and neighbor interaction to guide each atom in the population. On the other hand, particle swarm optimization is a swarm intelligence algorithm that uses a population of particles to search for the optimal solution through a social learning process. The proposed algorithm aims to reach exploration-exploitation balance to improve search efficiency. The efficacy of h-ASPSO has been demonstrated in improving the time-domain performance of two high-order real-world engineering problems: the design of a proportional-integral-derivative controller for an automatic voltage regulator and a doubly fed induction generator-based wind turbine systems. The results show that h-ASPSO outperformed the original atom search optimization in terms of convergence speed and quality of solution and can provide more promising results for different high-order engineering systems without significantly increasing the computational cost. The promise of the proposed method is further demonstrated using other available competitive methods that are utilized for the automatic voltage regulator and a doubly fed induction generator-based wind turbine systems.
               
Click one of the above tabs to view related content.