The Adeno-associated virus (AAV) gene delivery system is ushering in a new and exciting era in the United States; following the first approved gene therapy (Glybera) in Europe, the FDA… Click to show full abstract
The Adeno-associated virus (AAV) gene delivery system is ushering in a new and exciting era in the United States; following the first approved gene therapy (Glybera) in Europe, the FDA has approved a second therapy, Luxturna [1]. However, challenges to this system remain. In viral gene therapy, the surface of the capsid is an important determinant of tissue tropism, impacts gene transfer efficiency, and is targeted by the human immune system. Preexisting immunity is a significant challenge to this approach, and the ability to visualize areas of antibody binding (“footprints”) can inform efforts to improve the efficacy of viral vectors. Atomic resolution, smaller proteins, and asymmetric structures are the goals to attain in cryo-electron microscopy and image reconstruction (cryo-EM) as of late. The versatility of the technique and the ability to vitrify a wide range of heterogeneous molecules in solution allow structural biologists to characterize a variety of protein–DNA and protein–protein interactions at lower resolution. Cryo-EM has served as an important means to study key surface areas of the AAV gene delivery vehicle—specifically, those involved with binding neutralizing antibodies (NAbs) [2–4]. This method offers a unique opportunity for visualizing antibody binding “hotspots” on the surface of these and other viral vectors. When combined with mutagenesis, one can eliminate these hotspots to create viral vectors with the ability to avoid preexisting host immune recognition during gene delivery and genetic defect correction in disease treatment. Here, we discuss the use of structure-guided site-directed mutagenesis and directed evolution to create “stealth” AAV vectors with modified surface amino acid sequences that allow NAb avoidance while maintaining natural capsid functions or gaining desired novel tropisms.
               
Click one of the above tabs to view related content.