LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule 1

Photo by berkshirecommunitycollege from unsplash

Porphyromonas gingivalis is a major pathogen in severe and chronic manifestations of periodontal disease, which is one of the most common infections of humans. A central feature of P. gingivalis… Click to show full abstract

Porphyromonas gingivalis is a major pathogen in severe and chronic manifestations of periodontal disease, which is one of the most common infections of humans. A central feature of P. gingivalis pathogenicity is dysregulation of innate immunity at the gingival epithelial interface; however, the molecular basis underlying P. gingivalis–dependent abrogation of epithelial barrier function remains unknown. Gingival epithelial cells express junctional adhesion molecule (JAM1), a tight junction–associated protein, and JAM1 homodimers regulate epithelial barrier function. Here we show that Arg-specific or Lys-specific cysteine proteases (gingipains) secreted by P. gingivalis can specifically degrade JAM1 at K134 and R234 in gingival epithelial cells, resulting in permeability of the gingival epithelium to 40 kDa dextran, lipopolysaccharide (LPS), and proteoglycan (PGN). A P. gingivalis strain lacking gingipains was impaired in degradation of JAM1. Knockdown of JAM1 in monolayer cells and a three-dimensional multilayered tissue model also increased permeability to LPS, PGN, and gingipains. Inversely, overexpression of JAM1 in epithelial cells prevented penetration by these agents following P. gingivalis infection. Our findings strongly suggest that P. gingivalis gingipains disrupt barrier function of stratified squamous epithelium via degradation of JAM1, allowing bacterial virulence factors to penetrate into subepithelial tissues.

Keywords: degradation; jam1; epithelium; porphyromonas gingivalis; gingivalis; junctional adhesion

Journal Title: PLoS Pathogens
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.