LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adaptive immune defense prevents Bartonella persistence upon trans-placental transmission

Photo by cdc from unsplash

Vertical transmission of Bartonella infection has been reported for several mammalian species including mice and humans. Accordingly, it is commonly held that acquired immunological tolerance contributes critically to the high… Click to show full abstract

Vertical transmission of Bartonella infection has been reported for several mammalian species including mice and humans. Accordingly, it is commonly held that acquired immunological tolerance contributes critically to the high prevalence of Bartonellae in wild-ranging rodent populations. Here we studied an experimental model of Bartonella infection in mice to assess the impact of maternal and newborn immune defense on vertical transmission and bacterial persistence in the offspring, respectively. Congenital infection was frequently observed in B cell-deficient mothers but not in immunocompetent dams, which correlated with a rapid onset of an antibacterial antibody response in infected WT animals. Intriguingly, B cell-deficient offspring with congenital infection exhibited long-term bacteremia whereas B cell-sufficient offspring cleared bacteremia within a few weeks after birth. Clearance of congenital Bartonella infection resulted in immunity against bacterial rechallenge, with the animals mounting Bartonella-neutralizing antibody responses of normal magnitude. These observations reveal a key role for humoral immune defense by the mother and offspring in preventing and eliminating vertical transmission. Moreover, congenital Bartonella infection does not induce humoral immune tolerance but results in anti-bacterial immunity, questioning the contribution of neonatal tolerance to Bartonella prevalence in wild-ranging rodents.

Keywords: bartonella; bartonella infection; immune defense; transmission

Journal Title: PLoS Pathogens
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.