LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Respiratory syncytial virus ribonucleoproteins hijack microtubule Rab11 dependent transport for intracellular trafficking

Photo by fusion_medical_animation from unsplash

Respiratory syncytial virus (RSV) is the primary cause of severe respiratory infection in infants worldwide. Replication of RSV genomic RNA occurs in cytoplasmic inclusions generating viral ribonucleoprotein complexes (vRNPs). vRNPs… Click to show full abstract

Respiratory syncytial virus (RSV) is the primary cause of severe respiratory infection in infants worldwide. Replication of RSV genomic RNA occurs in cytoplasmic inclusions generating viral ribonucleoprotein complexes (vRNPs). vRNPs then reach assembly and budding sites at the plasma membrane. However, mechanisms ensuring vRNPs transportation are unknown. We generated a recombinant RSV harboring fluorescent RNPs allowing us to visualize moving vRNPs in living infected cells and developed an automated imaging pipeline to characterize the movements of vRNPs at a high throughput. Automatic tracking of vRNPs revealed that around 10% of the RNPs exhibit fast and directed motion compatible with transport along the microtubules. Visualization of vRNPs moving along labeled microtubules and restriction of their movements by microtubule depolymerization further support microtubules involvement in vRNPs trafficking. Approximately 30% of vRNPs colocalize with Rab11a protein, a marker of the endosome recycling (ER) pathway and we observed vRNPs and Rab11-labeled vesicles moving together. Transient inhibition of Rab11a expression significantly reduces vRNPs movements demonstrating Rab11 involvement in RNPs trafficking. Finally, Rab11a is specifically immunoprecipitated with vRNPs in infected cells suggesting an interaction between Rab11 and the vRNPs. Altogether, our results strongly suggest that RSV RNPs move on microtubules by hijacking the ER pathway.

Keywords: syncytial virus; rab11; transport; rsv; respiratory syncytial

Journal Title: PLoS Pathogens
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.