LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Food for thought—The link between Clostridioides difficile metabolism and pathogenesis

Photo from wikipedia

Clostridioides difficile (C. difficile) is an opportunistic pathogen that leads to antibiotic-associated diarrhoea and is a leading cause of morbidity and mortality worldwide. Antibiotic usage is the main risk factor… Click to show full abstract

Clostridioides difficile (C. difficile) is an opportunistic pathogen that leads to antibiotic-associated diarrhoea and is a leading cause of morbidity and mortality worldwide. Antibiotic usage is the main risk factor leading to C. difficile infection (CDI), as a dysbiotic gut environment allows colonisation and eventual pathology manifested by toxin production. Although colonisation resistance is mediated by the action of secondary bile acids inhibiting vegetative outgrowth, nutrient competition also plays a role in preventing CDI as the gut microbiota compete for nutrient niches inhibiting C. difficile growth. C. difficile is able to metabolise carbon dioxide, the amino acids proline, hydroxyproline, and ornithine, the cell membrane constituent ethanolamine, and the carbohydrates trehalose, cellobiose, sorbitol, and mucin degradation products as carbon and energy sources through multiple pathways. Zinc sequestration by the host response mediates metabolic adaptation of C. difficile by perhaps signalling an inflamed gut allowing it to acquire abundant nutrients. Persistence within the gut environment is also mediated by the by-products of metabolism through the production of p-cresol, which inhibit gut commensal species growth promoting dysbiosis. This review aims to explore and describe the various metabolic pathways of C. difficile, which facilitate its survival and pathogenesis within the colonised host gut.

Keywords: metabolism; food thought; gut; clostridioides difficile; thought link; pathogenesis

Journal Title: PLOS Pathogens
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.