Patients with intracerebral hemorrhage (ICH) often suffer from heterogeneous long-term neurological deficits, such as cognitive decline. Our ability to measure secondary brain injury to predict the long-term outcomes of these… Click to show full abstract
Patients with intracerebral hemorrhage (ICH) often suffer from heterogeneous long-term neurological deficits, such as cognitive decline. Our ability to measure secondary brain injury to predict the long-term outcomes of these patients is limited. We investigated whether the blood neurofilament light chain (NfL) can monitor brain injury and predict long-term outcomes in patients with ICH. We enrolled 300 patients with first-episode ICH within 24 h recruited in the Chinese Cerebral Hemorrhage Mechanisms and Intervention study cohort from January 2019 to June 2020. Patients were prospectively followed up for 12 months. Blood samples were collected from 153 healthy participants. Plasma NfL levels determined using a single-molecule array revealed a biphasic increase in plasma NfL in ICH patients compared to healthy controls, with the first peak at around 24 h and a second elevation from day 7 through day 14 post-ICH. Plasma NfL levels were positively correlated with hemorrhage volume, National Institute of Health Stroke Scale, and Glasgow Coma Scale scores of ICH patients. Higher NfL concentration within 72 h after ictus was independently associated with 6- and 12-month worsened functional outcomes (modified Rankin Scale ≥ 3) and higher all-cause mortality. Magnetic resonance imaging and cognitive function evaluation were available for 26 patients at 6 months post-ICH, and NfL levels measured 7 days post-ictus correlated with decreased white matter fiber integrity and poor cognitive function at 6 months after stroke. These findings suggest that blood NfL is a sensitive marker for monitoring axonal injury post-ICH and can predict long-term functional ability and survival.
               
Click one of the above tabs to view related content.