LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nuclear Bodies Built on Architectural Long Noncoding RNAs: Unifying Principles of Their Construction and Function

Photo from wikipedia

Nuclear bodies are subnuclear, spheroidal, and membraneless compartments that concentrate specific proteins and/or RNAs. They serve as sites of biogenesis, storage, and sequestration of specific RNAs, proteins, or ribonucleoprotein complexes.… Click to show full abstract

Nuclear bodies are subnuclear, spheroidal, and membraneless compartments that concentrate specific proteins and/or RNAs. They serve as sites of biogenesis, storage, and sequestration of specific RNAs, proteins, or ribonucleoprotein complexes. Recent studies reveal that a subset of nuclear bodies in various eukaryotic organisms is constructed using architectural long noncoding RNAs (arcRNAs). Here, we describe the unifying mechanistic principles of the construction and function of these bodies, especially focusing on liquid-liquid phase separation induced by architectural molecules that form multiple weakly adhesive interactions. We also discuss three possible advantages of using arcRNAs rather than architectural proteins to build the bodies: position-specificity, rapidity, and economy in sequestering nucleic acid-binding proteins. Moreover, we introduce two recently devised methods to discover novel arcRNA-constructed bodies; one that focuses on the RNase-sensitivity of these bodies, and another that focuses on “semi-extractability” of arcRNAs.

Keywords: architectural long; long noncoding; construction function; noncoding rnas; nuclear bodies; principles construction

Journal Title: Molecules and Cells
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.