LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impaired Hippocampal Synaptic Plasticity and Enhanced Excitatory Transmission in a Novel Animal Model of Autism Spectrum Disorders with Telomerase Reverse Transcriptase Overexpression

Photo from wikipedia

Recently, we have reported that animals with telomerase reverse transcriptase (TERT) overexpression exhibit reduced social interaction, decreased preference for novel social interaction and poor nest-building behaviors symptoms that mirror those… Click to show full abstract

Recently, we have reported that animals with telomerase reverse transcriptase (TERT) overexpression exhibit reduced social interaction, decreased preference for novel social interaction and poor nest-building behaviors symptoms that mirror those observed in human autism spectrum disorders (ASD). Overexpression of TERT also alters the excitatory/inhibitory (E/I) ratio in the medial prefrontal cortex. However, the effects of TERT overexpression on hippocampal-dependent learning and synaptic efficacy have not been investigated. In the present study, we employed electrophysiological approaches in combination with behavioral analysis to examine hippocampal function of TERT transgenic (TERT-tg) mice and FVB controls. We found that TERT overexpression results in enhanced hippocampal excitation with no changes in inhibition and significantly impairs long-term synaptic plasticity. Interestingly, the expression levels of phosphorylated CREB and phosphory-lated CaMKIIα were significantly decreased while the expression level of CaMKIIα was slightly increased in the hippocampus of TERT-overexpressing mice. Our observations highlight the importance of TERT in normal synaptic function and behavior and provide additional information on a novel animal model of ASD associated with TERT overexpression.

Keywords: tert overexpression; overexpression; telomerase reverse; tert; reverse transcriptase; autism spectrum

Journal Title: Molecules and Cells
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.