LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potential degradation and colonization time of ruminal microorganisms on the particles of different oilseeds-crushed, and its chemical composition

Photo from wikipedia

This study was carried out to evaluate by-product of the biodiesel industry as canola, safflower, forage turnip, and soybean crushed on the chemical composition, in situ degradability, and colonization time.… Click to show full abstract

This study was carried out to evaluate by-product of the biodiesel industry as canola, safflower, forage turnip, and soybean crushed on the chemical composition, in situ degradability, and colonization time. Canola (Brassica napus L. var. oleifera), safflower (Carthamus tinctorius L.), forage turnip (Raphanus stivus L. var. oleiferus Metzg), and soybean (Glycine max) grains went through the oil extraction process by means of a cold pressing, resulting in the oilseeds-crushed. The treatments identification included: CAN – Canola crushed; SAF – Safflower crushed; TUR – Forage turnip crushed; and SOY – Soybean crushed. The oilseed-crushed treatments were quantified about mineral (calcium, magnesium, copper, iron, manganese, zinc, phosphorus and potassium), chemical composition (dry matter, ash, organic matter, crude protein, ether extract, neutral detergent fiber, acid detergent fiber, total carbohydrates, non-fibrous carbohydrates, and total digestible nutrient contents), In situ degradability, and colonization time. Magnesium, phosphorus, and zinc showed the greater values for TUR treatment 3.46, 27.4, 39.8, respectively, when compared to the other oilseed-crushed treatments. The TUR treatment had the lowest organic matter, whereas had the greater (p≤0.05; TUR and SOY treatments) for the non-fibrous carbohydrates. Ether extract was not affected (p>0.05) with the different oilseed-crushed treatments. Neutral detergent fiber was affected (p≤0.05) for CAN and SAF treatments with the greater values, 344 and 500 g/kg of dry matter, respectively. Soluble and potentially degradable fractions for SAF treatment showed similar results. Whereas the constant rate of degradation, presented the lowest value when compared to the other treatments. Effective degradability of crude protein was greater for CAN 63.2% than SOY 65.9% treatment, which had the lowest value. Potential degradability of crude protein did not differ between treatments. Colonization time for dry matter and crude protein were similar between TUR and SOY treatments. In conclusion, oilseeds-crushed from the biodiesel production can be targeted/used, as feed with great protein and energetic potential in the ruminant’s production, considering the need of correct formulation and ingredients knowledge.

Keywords: chemical composition; colonization time; oilseeds crushed; colonization

Journal Title: Bioscience Journal
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.