LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation of kerf Characteristics in Abrasive Water Jet Machining of Inconel 600 using Response Surface Methodology

Photo from wikipedia

Abrasive water jet machining (AWJM) has found its application in the manufacturing industries for machining hard materials with precision. A degree of high precision in machining of complex geometries makes… Click to show full abstract

Abrasive water jet machining (AWJM) has found its application in the manufacturing industries for machining hard materials with precision. A degree of high precision in machining of complex geometries makes AWJM valuable. The selection of optimum process parameters is important to the resulting quality of machined parts. In this study, an experimental investigation was conducted to evaluate the machinability of Inconel 600. A response surface methodology (RSM) is used to determine the influence of the AWJM process parameters on the considered performance characteristics, i.e., kerf top width (KTW) and taper angle. The analysis of variance is performed to obtain the contribution and influence of each process parameter on the considered responses. The value of R-Squared obtained for KTW and taper angle using regression model is 0.97 and 0.96 respectively. The optimum setting of the parameters for single and multiple response characteristics are obtained using the desirability analysis of RSM. The results obtained using desirability analysis of RSM is validated by conducting the confirmation experiments. The experimental confirmatory values obtained for the considered performance parameters KTW and taper angle as 27.138 and 0.125 respectively. The corresponding value of error obtained as 0.383 and 0.013 respectively. Further, an optimum set is obtained with KTW as 27.461 mm and taper angle as 0.582° for multiple response optimisation.

Keywords: methodology; water jet; inconel 600; response; abrasive water; jet machining

Journal Title: Defence Science Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.