LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Femtosecond Filaments for Standoff Detection of Explosives

Photo from academic.microsoft.com

In this report, we present our results from various studies to qualitatively discriminate the common military explosives viz. RDX, TNT and HMX in their pure form at a distance of… Click to show full abstract

In this report, we present our results from various studies to qualitatively discriminate the common military explosives viz. RDX, TNT and HMX in their pure form at a distance of ~6.5 m in standoff mode using femtosecond (fs) filament induced breakdown spectroscopy technique (fs FIBS) together with principal component analysis. A ~30 cm length fs filament obtained by a two-lens configuration was used to interrogate those energetic molecules in the form of pressed pellets (150 mg each). The plasma emissions were collected by a Schmidt-Cassegrain telescope (SCT) from a distance of ~8 m away from the investigation zone. Additionally, a few significant results obtained from the LIBS-based investigations of nitroimidazoles with respect to the standoff distance (~2 m) are discussed. Furthermore, we have also summarised a few important results from our recent investigations of bulk energetic materials in various configurations (including those with fs filaments). The results obtained from various fs FIBS configurations corroborate that the filament generation and its properties, the size and f-number of collection optics influence signal strength in the FIBS technique. These results project the fs FIBS technique as a potential technique for investigations aimed at hazardous materials and harsh environments in the standoff mode.

Keywords: femtosecond filaments; detection explosives; standoff detection; distance; filaments standoff; spectroscopy

Journal Title: Defence Science Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.