LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Vitro Biomechanical Evaluation of a Novel, Minimally Invasive, Sacroiliac Joint Fixation Device

Photo from wikipedia

ABSTRACT Background: Sacroiliac (SI) joint pathology may result in low-back pain, which causes substantial disability. Treatment failure with operative management of SI pain may be related to incomplete fusion of… Click to show full abstract

ABSTRACT Background: Sacroiliac (SI) joint pathology may result in low-back pain, which causes substantial disability. Treatment failure with operative management of SI pain may be related to incomplete fusion of the joint and to fixation failure. The objective of this study was to evaluate the initial biomechanical stability of SI joint fixation with a novel implantable device in an in vitro human cadaveric model. Methods: The right and left sides of 3 cadaveric L4-pelvis specimens were tested (1) intact, (2) destabilized, and (3) instrumented with an implantable SI joint fixation device using a simulated single-stance load condition. Right-leg and left-leg stance data were grouped together for a sample size of 6, and angular range of motion (ROM) was determined during application of flexion-extension, lateral bending, and axial rotation bending moments to a limit of 7.5 Nm. Results: Following intact testing, destabilization by severing the posterior SI joint capsule and ligaments and the pubic symphysis reliably produced a significantly destabilized joint with the mean angular ROM more than doubling in flexion-extension and lateral bending and more than tripling in axial rotation (P ≤ .003) compared to the intact condition. Instrumentation with the SI screw fixation device significantly reduced mean joint ROM compared to the destabilized condition in all 3 anatomic planes tested (P < .001). When compared to the intact condition, the SI-instrumented condition significantly reduced lateral bending (P = .01) and had a similar ROM in flexion-extension (P = .14) and axial rotation (P = .85). Conclusions: Instrumentation with the SI screw fixation device significantly reduced mean joint ROM compared to the destabilized condition, with similar ROM in flexion-extension and axial rotation, and it significantly reduced ROM in lateral bending compared to that for the intact joint. The ROM values observed with the instrumented condition were comparable to levels of mobility considered favorable for spinal fusion.

Keywords: fixation; condition; rom; fixation device; joint fixation; device

Journal Title: International Journal of Spine Surgery
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.