LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational hunting of natural active compounds as an alternative for Remdesivir to target RNA-dependent polymerase.

Photo from wikipedia

The hunt for potential lead/drug molecules from different resources, especially from natural resources, for possible treatment of COVID-19 is ongoing. Several compounds have already been identified, but only a few… Click to show full abstract

The hunt for potential lead/drug molecules from different resources, especially from natural resources, for possible treatment of COVID-19 is ongoing. Several compounds have already been identified, but only a few are good enough to show potential against the virus. Among the identified druggable target proteins of SARS-CoV-2, this study focuses on non-structural RNA-dependent RNA polymerase protein (RdRp), a well-known enzyme for both viral genome replication and viral mRNA synthesis, and is therefore considered to be the primary target. In this study, the virtual screening followed by an in-depth docking study of the Compounds Library found that natural compound Cyclocurcumin and Silybin B have strong interaction with RdRp and much better than the remdesivir with free binding energy and inhibition constant value as ꞌ-6.29 kcal/mol and 58.39 µMꞌ, and ꞌ-7.93kcal/mol and 45.3 µMꞌ, respectively. The finding indicated that the selected hits (Cyclocurcumin and Silybin B) could act as non-nucleotide anti-polymerase agents, and can be further optimized as a potential inhibitor of RdRp by benchwork experiments.

Keywords: computational hunting; rna dependent; hunting natural; target; polymerase; natural active

Journal Title: Cellular and molecular biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.