Objective: We investigated the possible association of serum acylation stimulating protein (ASP) with cardiometabolic disorders and the evidence of autoimmune activation. Methods: Population-based randomly selected 1024 participants were cross-sectionally and… Click to show full abstract
Objective: We investigated the possible association of serum acylation stimulating protein (ASP) with cardiometabolic disorders and the evidence of autoimmune activation. Methods: Population-based randomly selected 1024 participants were cross-sectionally and prospectively analyzed. ASP concentrations were measured with a validated ELISA kit. Correlations were sought separately in subjects with no cardiometabolic disorders (n=427) designated as “healthy.” Results: ASP was positively correlated with total testosterone and inversely correlated with platelet activating factor (PAF), PAF-acetylhydrolase (AH), in each gender, and positively correlated in “healthy” men with lipoprotein [Lp](a) and apolipoprotein B. Correlations of ASP with PAF values ≥22 nmol/L were abolished, contrasted to a strongly inverse one in subjects with PAF <22 nmol/L. In linear regression analyses in the whole sample, ASP was inversely associated independently with PAF and PAF-AH and, in men, positively with Lp(a) and sex hormone-binding globulin. Prevalent and (at 2.0 years’ follow-up) incident metabolic syndrome (MetS, n=393), diabetes (n=154), and coronary heart disease (CHD, n=171) were analyzed by sex-, age-, and Lp(a)-adjusted logistic regression, using tertiles of ASP and PAF. The lower two (<42 nmol/L) ASP tertiles were a risk factor in combined sexes for MetS and diabetes. In women, incident CHD was predicted by either reduced or elevated ASP tertiles. Conclusion: Findings can be explained by the notion of operation of immune responses against both ASP and oxidized PAF-like lipids of Lp(a) to yield for “reduced” values and increased likelihood of cardiometabolic disorders.
               
Click one of the above tabs to view related content.