LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tumor necrosis factor α decreases aquaporin 3 expression in intestinal epithelial cells through inhibition of constitutive transcription

Photo by ospanali from unsplash

Inflammatory diseases of the gut are associated with altered electrolyte and water transport, leading to the development of diarrhea. Epithelially expressed aquaporins (AQPs) are downregulated in inflammation, although the mechanisms… Click to show full abstract

Inflammatory diseases of the gut are associated with altered electrolyte and water transport, leading to the development of diarrhea. Epithelially expressed aquaporins (AQPs) are downregulated in inflammation, although the mechanisms involved are not known. We hypothesized that AQP3 expression in intestinal epithelial cells is altered in intestinal inflammation and that these changes are driven by tumor necrosis factor (TNF) α. Human colonic adenocarcinoma (HT‐29) cells were treated with TNFα to investigate signaling mechanisms in vitro. AQP3 expression was assessed by real‐time PCR and radiolabeled glycerol uptake, with select inhibitors and a luciferase reporter construct used to further elucidate intracellular signaling. AQP3 expression was downregulated in HT‐29 cells treated with TNFα. Luciferase reporter construct experiments revealed that TNFα downregulated constitutive transcriptional activity of the AQP3 promoter, and inhibition of MEK/ERK and nuclear factor κB (NF‐κB) signaling prevented the decrease in AQP3 mRNA expression. Constitutive AQP3 expression was suppressed by specificity protein (Sp) 3, and knockdown of this transcription factor bound to the AQP3 promoter was able to partially prevent the TNFα‐induced downregulation of AQP3. TNFα signals through MEK/ERK and NF‐κB to enhance the negative transcriptional control of AQP3 expression exerted by Sp3. Similar mechanisms regulate numerous ion channels, suggesting a common mechanism by which both ion and water transport are altered in inflammation.

Keywords: epithelial cells; aqp3 expression; intestinal epithelial; expression intestinal; expression; factor

Journal Title: Physiological Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.