LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Slc4a11 disruption causes duct cell loss and impairs NaCl reabsorption in female mouse submandibular glands

Photo by edenconstantin0 from unsplash

Slc4a11, a member of the Slc4 HCO3− transporter family, has a wide tissue distribution. In mouse salivary glands, the expression of Slc4a11 mRNA was more than eightfold greater than the… Click to show full abstract

Slc4a11, a member of the Slc4 HCO3− transporter family, has a wide tissue distribution. In mouse salivary glands, the expression of Slc4a11 mRNA was more than eightfold greater than the other nine members of the Slc4 gene family. The Slc4a11 protein displayed a diffuse subcellular distribution in both the acinar and duct cells of mouse submandibular glands (SMG). Slc4a11 disruption induced a significant increase in the Na+ and Cl− concentrations of stimulated SMG saliva, whereas it did not affect the fluid secretion rate in response to either β‐adrenergic or cholinergic receptor stimulation. Heterologous expressed mouse Slc4a11 acted as a H+/OH− transporter that was uncoupled of Na+ or Cl− movement, and this activity was blocked by ethyl‐isopropyl amiloride (EIPA) but not 4,4′‐Diisothiocyanato‐2,2′‐stilbenedisulfonic acid (DIDS). Slc4a11 disruption revealed that Slc4a11 does not play a major role in intracellular pH regulation in mouse salivary gland cells. In contrast, NaCl reabsorption was impaired in the SMG saliva of female compared to male Slc4a11 null mice, which correlated with the loss of duct cells and a decrease in expression of the duct‐cell‐specific transcription factor Ascl3. Together, our results suggest that Slc4a11 expression regulates the number of ducts cells in the mouse SMG and consequently NaCl reabsorption.

Keywords: nacl reabsorption; duct; slc4a11 disruption; mouse

Journal Title: Physiological Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.