LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cellular heterogeneity in the 16HBE14o- airway epithelial line impacts biological readouts.

Photo by alirezaakhlaghiofficial from unsplash

Abstract The airway epithelial cell line, 16HBE14o−, is an important cell model for studying airway disease. 16HBE14o− cells were originally generated from primary human bronchial epithelial cells by SV40‐mediated immortalization,… Click to show full abstract

Abstract The airway epithelial cell line, 16HBE14o−, is an important cell model for studying airway disease. 16HBE14o− cells were originally generated from primary human bronchial epithelial cells by SV40‐mediated immortalization, a process that is associated with genomic instability through long‐term culture. Here, we explore the heterogeneity of these cells, with respect to expression of the cystic fibrosis transmembrane conductance regulator (CFTR) transcript and protein. We isolate clones of 16HBE14o− with stably higher and lower levels of CFTR in comparison to bulk 16HBE14o−, designated CFTRhigh and CFTRlow. Detailed characterization of the CFTR locus in these clones by ATAC‐seq and 4C‐seq showed open chromatin profiles and higher order chromatin structure that correlate with CFTR expression levels. Transcriptomic profiling of CFTRhigh and CFTRlow cells showed that the CFTRhigh cells had an elevated inflammatory/innate immune response phenotype. These results encourage caution in interpreting functional data from clonal lines of 16HBE14o− cells, generated after genomic or other manipulations.

Keywords: 16hbe14o airway; airway epithelial; heterogeneity 16hbe14o; line; cellular heterogeneity

Journal Title: Physiological reports
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.