Fast identification of faulty sensors is necessary for guaranteeing their robust functions in diverse applications ranging from extreme weather prediction to energy saving to healthcare. We present an automated machine-learning… Click to show full abstract
Fast identification of faulty sensors is necessary for guaranteeing their robust functions in diverse applications ranging from extreme weather prediction to energy saving to healthcare. We present an automated machine-learning based framework that can detect anomalies of temperature sensor data in real-time. We adopted a purely temporal approach that utilises a univariate time-series (UTS) generated by a single sensor. The framework divides the UTS into subsequences, models each subsequence stochastically as an autoregressive function, and finally mines the function parameters with a one-class support vector machines (OC-SVM) that classifies any outlier as an anomaly. Extensive experimentation showed that the framework identifies both normal and anomalous data correctly with high degrees of accuracy.
               
Click one of the above tabs to view related content.