Abstract We consider second-order divergence form elliptic operators with W1,1{W^{1,1}} coefficients, in a uniform domain Ω with Ahlfors regular boundary. We show that the A∞{A_{\infty}} property of the elliptic measure… Click to show full abstract
Abstract We consider second-order divergence form elliptic operators with W1,1{W^{1,1}} coefficients, in a uniform domain Ω with Ahlfors regular boundary. We show that the A∞{A_{\infty}} property of the elliptic measure associated to any such operator implies that Ω is a set of locally finite perimeter whose boundary, ∂Ω{\partial\Omega}, is rectifiable. As a corollary we show that for this type of operators, absolute continuity of the surface measure with respect to the elliptic measure is enough to guarantee rectifiability of the boundary. In the case that the coefficients are continuous we obtain additional information about Ω.
               
Click one of the above tabs to view related content.