Abstract We study minimisation problems in L ∞ {L^{\infty}} for general quasiconvex first order functionals, where the class of admissible mappings is constrained by the sublevel sets of another supremal… Click to show full abstract
Abstract We study minimisation problems in L ∞ {L^{\infty}} for general quasiconvex first order functionals, where the class of admissible mappings is constrained by the sublevel sets of another supremal functional and by the zero set of a nonlinear operator. Examples of admissible operators include those expressing pointwise, unilateral, integral isoperimetric, elliptic quasilinear differential, Jacobian and null Lagrangian constraints. Via the method of L p {L^{p}} approximations as p → ∞ {p\to\infty} , we illustrate the existence of a special L ∞ {L^{\infty}} minimiser which solves a divergence PDE system involving certain auxiliary measures as coefficients. This system can be seen as a divergence form counterpart of the Aronsson PDE system which is associated with the constrained L ∞ {L^{\infty}} variational problem.
               
Click one of the above tabs to view related content.