Abstract Let π be a commutative semigroup, πΎ a quadratically closed commutative field of characteristic different from 2, πΊ a 2-cancellative abelian group and π» an abelian group uniquely divisible… Click to show full abstract
Abstract Let π be a commutative semigroup, πΎ a quadratically closed commutative field of characteristic different from 2, πΊ a 2-cancellative abelian group and π» an abelian group uniquely divisible by 2. The goal of this paper is to find the general non-zero solution f : S 2 β K f\colon S^{2}\to K of the dβAlembert type equation f β’ ( x + y , z + w ) + f β’ ( x + Ο β’ ( y ) , z + Ο β’ ( w ) ) = 2 β’ f β’ ( x , z ) β’ f β’ ( y , w ) , x , y , z , w β S , f(x+y,z+w)+f(x+\sigma(y),z+\tau(w))=2f(x,z)f(y,w),\quad x,y,z,w\in S, the general non-zero solution f : S 2 β G f\colon S^{2}\to G of the Jensen type equation f β’ ( x + y , z + w ) + f β’ ( x + Ο β’ ( y ) , z + Ο β’ ( w ) ) = 2 β’ f β’ ( x , z ) , x , y , z , w β S , f(x+y,z+w)+f(x+\sigma(y),z+\tau(w))=2f(x,z),\quad x,y,z,w\in S, the general non-zero solution f : S 2 β H f\colon S^{2}\to H of the quadratic type equation f β’ ( x + y , z + w ) + f β’ ( x + Ο β’ ( y ) , z + Ο β’ ( w ) ) = 2 β’ f β’ ( x , z ) + 2 β’ f β’ ( y , w ) , x , y , z , w β S , f(x+y,z+w)+f(x+\sigma(y),z+\tau(w))=2f(x,z)+2f(y,w),\quad x,y,z,w\in S, where Ο , Ο : S β S \sigma,\tau\colon S\to S are two involutions.
               
Click one of the above tabs to view related content.