LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On a new class of two-variable functional equations on semigroups with involutions

Photo from wikipedia

Abstract Let 𝑆 be a commutative semigroup, 𝐾 a quadratically closed commutative field of characteristic different from 2, 𝐺 a 2-cancellative abelian group and 𝐻 an abelian group uniquely divisible… Click to show full abstract

Abstract Let 𝑆 be a commutative semigroup, 𝐾 a quadratically closed commutative field of characteristic different from 2, 𝐺 a 2-cancellative abelian group and 𝐻 an abelian group uniquely divisible by 2. The goal of this paper is to find the general non-zero solution f : S 2 β†’ K f\colon S^{2}\to K of the d’Alembert type equation f ⁒ ( x + y , z + w ) + f ⁒ ( x + Οƒ ⁒ ( y ) , z + Ο„ ⁒ ( w ) ) = 2 ⁒ f ⁒ ( x , z ) ⁒ f ⁒ ( y , w ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\sigma(y),z+\tau(w))=2f(x,z)f(y,w),\quad x,y,z,w\in S, the general non-zero solution f : S 2 β†’ G f\colon S^{2}\to G of the Jensen type equation f ⁒ ( x + y , z + w ) + f ⁒ ( x + Οƒ ⁒ ( y ) , z + Ο„ ⁒ ( w ) ) = 2 ⁒ f ⁒ ( x , z ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\sigma(y),z+\tau(w))=2f(x,z),\quad x,y,z,w\in S, the general non-zero solution f : S 2 β†’ H f\colon S^{2}\to H of the quadratic type equation f ⁒ ( x + y , z + w ) + f ⁒ ( x + Οƒ ⁒ ( y ) , z + Ο„ ⁒ ( w ) ) = 2 ⁒ f ⁒ ( x , z ) + 2 ⁒ f ⁒ ( y , w ) , x , y , z , w ∈ S , f(x+y,z+w)+f(x+\sigma(y),z+\tau(w))=2f(x,z)+2f(y,w),\quad x,y,z,w\in S, where Οƒ , Ο„ : S β†’ S \sigma,\tau\colon S\to S are two involutions.

Keywords: non zero; sigma tau; general non; colon

Journal Title: Analysis
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.