LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transovarial persistence of Babesia ovata DNA in a hard tick, Haemaphysalis longicornis, in a semi-artificial mouse skin membrane feeding system

Photo from wikipedia

Bovine piroplasmosis, a tick-borne protozoan disease, is a major concern for the cattle industry worldwide due to its negative effects on livestock productivity. Toward the development of novel therapeutic and… Click to show full abstract

Bovine piroplasmosis, a tick-borne protozoan disease, is a major concern for the cattle industry worldwide due to its negative effects on livestock productivity. Toward the development of novel therapeutic and vaccine approaches, tick-parasite experimental models have been established to clarify the development of parasites in the ticks and the transmission of the parasites by ticks. A novel tick-Babesia experimental infection model recently revealed the time course of Babesia ovata migration in its vector Haemaphysalis longicornis, which is a dominant tick species in Japan. However, there has been no research on the transovarial persistence of B. ovata DNA using this experimental infection model. Here we assessed the presence of B. ovata DNA in eggs derived from parthenogenetic H. longicornis female ticks that had engorged after semi-artificial mouse skin membrane feeding of B. ovata-infected bovine red blood cells. The oviposition period of the engorged female ticks was 21–24 days in the semi-artificial feeding. Total egg weight measured daily reached a peak by day 3 in all female ticks. Nested PCR revealed that 3 of 10 female ticks laid B. ovata DNA-positive eggs after the semi-artificial feeding. In addition, B. ovata DNA was detected at the peak of egg weight during oviposition, indicating that B. ovata exist in the eggs laid a few days after the onset of oviposition in the tick. These findings will contribute to the establishment of B. ovata-infected H. longicornis colonies under laboratory conditions.

Keywords: babesia; ovata dna; tick; semi artificial

Journal Title: Acta Parasitologica
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.