LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PI3K/AKT/mTOR pathway and its related molecules participate in PROK1 silence-induced anti-tumor effects on pancreatic cancer

Photo from wikipedia

Abstract The PI3K/AKT/mTOR (phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin) pathway can be initiated by PROK1 (prokineticin 1), but its effect and mechanism of action in pancreatic carcinoma (PC) are… Click to show full abstract

Abstract The PI3K/AKT/mTOR (phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin) pathway can be initiated by PROK1 (prokineticin 1), but its effect and mechanism of action in pancreatic carcinoma (PC) are not fully understood. In this study, we elucidated the roles of PROK1 and its related molecules in PC in vivo. PANC-1 cells with PROK1 knockdown were injected into BALB/c nude mice. The growth and weight of the tumor were monitored and measured, which was followed by TUNEL (terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling), immunohistochemical staining, and hematoxylin and eosin staining. The key proteins related to proliferation, apoptosis, and the PI3K/AKT/mTOR pathway were determined by Western blotting. We also used public databases to identify the molecules related to PROK1. The reduction of PROK1 inhibited angiopoiesis and promoted apoptosis in vivo. PCNA-1, cyclin D1, and Bcl-2 decreased considerably, while Bax and cleaved caspase-3 increased significantly after PROK1 inhibition. The PI3K/AKT/mTOR signal inhibition was also closely associated with PROK1 knockdown. The possible related molecules of PROK1, such as von Willebrand factor, were screened and considered to be involved in the aberrant activation of PI3K/AKT. In conclusion, PROK1 knockdown significantly prevented tumor growth and promoted apoptosis of human PC cells in vivo, where the PI3K/AKT/mTOR pathway was probably inhibited. Therefore, PROK1, along with its related molecules, might be important targets for PC therapy.

Keywords: akt mtor; pi3k akt; related molecules

Journal Title: Open Life Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.