LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Removal of H2S by vermicompost biofilter and analysis on bacterial community

Photo from wikipedia

Abstract The vermicompost collected from dewatered domestic sludge as packing material in biofilter was investigated for hydrogen sulfide (H2S) removal. No nutrients or microbial inoculation was added throughout the experiment.… Click to show full abstract

Abstract The vermicompost collected from dewatered domestic sludge as packing material in biofilter was investigated for hydrogen sulfide (H2S) removal. No nutrients or microbial inoculation was added throughout the experiment. The corresponding bacterial community characteristics in the vermicompost biofilter of different spatial levels were evaluated by Miseq high-throughput sequencing technique. The results showed that the vermicompost biofilter performed well during operation. The H2S removal efficiency reached nearly 100% under condition of the inlet concentration <350 mg m−3 and 0.25−0.35 m3 h−1 gas flow rate. The maximum elimination capacity of 20.2 g m−3 h−1 was observed at a flow rate of 0.35 m3 h−1. Furthermore, the amounts of biodegraded products and pH varied accordingly. In addition, the results from high-throughput sequencing revealed pronouncedly spatial variation of the vermicompost, and the Rhodanobacter, Halothiobacillus, Mizugakiibacter as well as Thiobacillus, which can play an important role in removing H2S, were predominant in the final vermicompost. These results imply that the vermicompost with diverse microbial communities has a good potential for eliminating H2S.

Keywords: h2s; vermicompost; removal; bacterial community; vermicompost biofilter

Journal Title: Open Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.