LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of elastomeric heat shielding materials as insulators for solid propellant rocket motors: A short review

Photo from wikipedia

Abstract This review addresses a comparison, based on the literature, among nitrile rubber (NBR), ethylene-propylene-diene-monomer rubber (EPDM), and polyurethane (PU) elastomeric heat shielding materials (EHSM). Currently, these are utilized for… Click to show full abstract

Abstract This review addresses a comparison, based on the literature, among nitrile rubber (NBR), ethylene-propylene-diene-monomer rubber (EPDM), and polyurethane (PU) elastomeric heat shielding materials (EHSM). Currently, these are utilized for the insulation of rocket engines to prevent catastrophic breakdown if combustion gases from propellant reaches the motor case. The objective of this review is to evaluate the performance of PU–EHSM, NBR–EHSM, and EPDM–EHSM as insulators, the latter being the current state of the art in solid rocket motor (SRM) internal insulation. From our review, PU–EHSM emerged as an alternative to EPDM–EHSM because of their easier processability and compatibility with composite propellant. With the appropriate reinforcement and concentration in the rubber, they could replace EPDM in certain applications such as rocket motors filled with composite propellant. A critical assessment and future trends are included. Rubber composites novelties as EHSM employs specialty fillers, such as carbon nanotubes, graphene, polyhedral oligosilsesquioxane (POSS), nanofibers, nanoparticles, and high-performance engineering polymers such as polyetherimide and polyphosphazenes.

Keywords: shielding materials; elastomeric heat; review; heat shielding; rocket; rocket motors

Journal Title: Open Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.