Abstract We prove boundedness results for integral operators of fractional type and their higher order commutators between weighted spaces, including Lp-Lq, Lp-BMO and Lp-Lipschitz estimates. The kernels of such operators… Click to show full abstract
Abstract We prove boundedness results for integral operators of fractional type and their higher order commutators between weighted spaces, including Lp-Lq, Lp-BMO and Lp-Lipschitz estimates. The kernels of such operators satisfy certain size condition and a Lipschitz type regularity, and the symbol of the commutator belongs to a Lipschitz class. We also deal with commutators of fractional type operators with less regular kernels satisfying a Hörmander’s type inequality. As far as we know, these last results are new even in the unweighted case. Moreover, we give a characterization result involving symbols of the commutators and continuity results for extreme values of p.
               
Click one of the above tabs to view related content.